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Definition

A numerical semigroup is a subset A of Ny satisfying
> 0cA
» A+ACA
» #(Np \ A) is finite (genus:=g:= #(No \ A))

Example: {0,4,5,8,9,10,12,...}

gaps: No \ A

non-gaps: A

Definition

[Eliahou-Fromentin] A gapset is a finite subset G of Ny satisfying

a,b e Ny

a+b€G}:>aeGorbeG.

G gapset <= Ny \ G numerical semigroup.



Cash point

The amounts of money one can obtain from a cash point (divided by 10)

lllustration: Agnes Capella Sala



Harmonics: 12-semitone count
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What semitone interval corresponds to each harmonic?

H = {0,12,19,24,28,31,34, 36,38, 40,42, 43,45, 46, 47, 48,49, 50, — }



Definition

A numerical semigroup is a subset A of Ny satisfying
> 0cA
» A+ACA
» #(Np \ A) is finite (genus:=g:= #(No \ A))

gaps: No \ A
non-gaps: A
The third condition implies that there exist

Frobenius number := the largest gap F
conductor:=c=F + 1



The Well-tempered semigroup
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H = {0,12,19,24,28,31,34,36, 38, 40,42, 43,45,46,47,48, ... }




Generators
The generators of a numerical semigroup are those non-gaps
which can not be obtained as a sum of two smaller non-gaps.

lllustration: Agnes Capella Sala




Classical problems
Frobenius’ coin problem
Wilf’s conjecture



Frobenius’ problem

Suppose we have coins of specified denominations (say
a‘] ge ey an).

What is the largest monetary amount that can not be obtained
using these coins? i.e., F((a1,...,an))?

n = 2: Sylvester’s formula aja> — a; — ao.
n>27?

Theorem (Curtis)
There is no polynomial solution for n = 3.


https://www.gettyimages.es/detail/foto/piles-of-stacked-coins-close-up-fotograf%C3%ADa-de-stock/200196880-001

Chicken Nuggets

Chicken nuggets come in boxes
of 6, 9, and 20.

6 9

What is the largest number of nuggets
that you CANNOT buy when combining
various boxes?

I'll take 11 chicken
nuggets, please!
I'm sorry, but
that’s not possible.

i.e. F((6,9,20))?


https://playwithyourmath.com/2017/07/27/3-chicken-nuggets/

Wilf’s conjecture (1978)
The number e of generators satisfies

c
c—g

ez

Important contributions of Zhai, Eliahou, Dobbs,
Matthews, Kaplan, Sammartano, Moscariello, among
others.
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Quasi-ordinarization transform and quasi-ordinarization forest



Counting semigroups by genus
Let ny denote the number of numerical semigroups of genus g.
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>

vVvVvyyVvyyvyy

ny = 1, since the unique numerical semigroup of genus 0 is
No
ny = 1, since the unique numerical semigroup of genus 1 is

n, = 2. Indeed the unique numerical semigroups of genus 2
are

n3 = 4

Nng =

Ng = 12

Ng = 23

n; =39

n8:67



Counting semigroups by genus
Conjecture
[B-A 2008]

Ng—1+Ng—2 =1
ng

. n,
> ||mg—>oong_f1 =¢

2. > limg_ o

Weaker unsolved conjecture



http://www.singacom.uva.es/oldsite/seminarios/WorkshopSG/workshop2/Bras_SG_2007.pdf

Counting semigroups by genus

Ng
Ng—1

Behavior of
g
ng,1

A
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Counting semigroups by genus

What is known

» Upper and lower bounds for ng

Dyck paths and Catalan bounds (w. de Mier), semigroup
tree and Fibonacci bounds, Elizalde’s improvements, and
others

. n,
> I"‘ng—>c>ongif1 =0

Alex Zhai (2013) with important contributions of Nathan
Kaplan and Yufei Zhao.
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Dyck paths

A Dyck path of order nis a staircase walk from (0, 0) to (n, n) that
lies over the diagonal x = y.

Example

(n,n)

Y
Y
Y

A
A

(0,0)

The number of Dyck paths of order nis given by the Catalan

number ; 5
n

Ch= .

n n+1<n)




Dyck paths
Definition
The square diagram of a numerical semigroup is the path

. — ifiel .
= ’ </ < .
e(f) {T itid A for1 <i<2g

Example
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It always goes from (0,0) to (g, g).



Dyck paths

Example




Dyck paths

Lemma
[B-A, de Mier, 2007]
The square diagram of a numerical semigroup is a Dyck path.

Corollary

ng < Cg = 57 (%)

But. .. not all Dyck paths correspond to numerical semigroups.



Dyck paths
Use the augmented Dyck path (from Q)




Dyck paths
Use the augmented Dyck path (from 0) and compute Hook lengths.
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Dyck paths
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Dyck paths

All Hook lengths

H(D) ={b—a:bagap,aanongap},

Hook lengths of first column

Hook length=
#gapsinfa+1.b]
+ # nongaps in [a, b — 1]

“ha h(D) ={b:bagap}.

KX XXX

By the gapset definition, an (aug-
mented) Dyck path corresponds
to a numerical semigroup if and
only if

JANN|
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H(D) C h(D)

[Constantin, Houston-Edwards,
Kaplan]
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Tree T of numerical semigroups

From genus g to genus g — 1

A s AULF(A)}
©OO0@®~©O@@®). -

Not injective

0009 00R
000000 200000 -



Tree T of numerical semigroups

From genus g — 1 to genus g
Take out one by one all generators of A larger than F(A).
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Tree T of numerical semigroups
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The parent of a semigroup A is A together with its Frobenius number.

The children of a semigroup are obtained taking away one by one all
generators larger than its Frobenius number.



Tree T of numerical semigroups

If all numerical semigroups had at least one child,
the conjecture ng < ng41 would be obvious.

OOOO@E O ()90 )12(13(14)... has 0 descendants
OOOO@E O (8)9)10@N12(13(14)... has 1 descendants
OOOO@E )@ (8)9)10(11(12(13(14)... has 2 descendants
OO@O@) () (8)@[0(11)(12(13(14)... has co descendants
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Tree T of numerical semigroups

Theorem (B-A, Bulygin, 2009)
Letd = gcd(AN[1,c —1]). Then,
1. A has oo descendants <— d # 1.

2. Ifd # 1 then A lies in infinitely many infinite chains if and only
if d is not prime.

Computation shows that most numerical semigroups have a finite
number of descendants.



Tree T of numerical semigroups




Tree T of numerical semigroups

We want to analyze the number of children of a node in terms of
the number of children of its parent.



Tree T of numerical semigroups
A numerical semigroup is ordinary if all its gaps are consecutive.

@OOOOOOEEN)9012314(908178)i9)20).

Children of ordinary semigroups

Lemma
If the node of an ordinary semigroup has k children, then its
children have 0,1, ...,k — 3,k — 1, k + 1 children, respectively.

Children of nonordinary semigroups

Lemma
If a non-ordinary node in the semigroup tree has k children, then
its children have

> atleast 0,...,k — 1 children, respectively,
> atmost 1,...,k children, respectively.



Subtree

Lower bound for the number of descendants of semigroups of genus 7g
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Subtree

Lemma
Forg > 3,



Supertree

Upper bound for the number of descendants of semigroups of genus g
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Bounds using descending rules

Lemma
Forg > 3,
2Fy <ng<1+3.2973
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Ordinary numerical semigroups

The multiplicity of a numerical semigroup is its smallest non-zero
nongap.

A non-trivial numerical semigroup is ordinary if m=F + 1.

@OOOOOOEDEX)9012312(908 7890



Ordinarization of semigroups

Ordinarization transform of a semigroup:

- Remove the multiplicity
- Add the Frobenius number

@OOOOEOOEXIO(908e ) 819
@OOOOEOOEX90123(4088 (819
0099998000 DDELOEOTDIDDN

» The result is another numerical semigroup.
> The genus is kept constant in all the transforms.

» Repeating several times (:= ordinarization number) we obtain
an ordinary semigroup.



Tree T, of numerical semigroups of genus g

The tree T,
Define a graph with
» nodes corresponding to semigroups of genus g

> edges connecting each semigroup to its ordinarization
transform
o(A) = A

Ty is a tree rooted at the unique ordinary semigroup of genus g.

Contrary to 7, T4 has only a finite number of nodes (indeed, ng).



Tree T, of numerical semigroups of genus g
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Conjecture

ng,r- number of semigroups of genus g and ordinarization number
r.

Conjecture

> Ngr < Ngit,r

» Equivalently, the number of semigroups in T4 at a given depth
is at most the number of semigroups in T4 at the same
depth.

This conjecture would prove ng < ng.

This result is proved for the lowest and largest depths.
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Quasi-ordinary numerical semigroups

A non-ordinary semigroup A is a quasi-ordinary semigroup if AU F
is ordinary.

@OOOOOODENC312(90870E) 9.



Quasi-ordinarization of semigroups
Quasi-ordinarization transform of a non-ordinary semigroup:

- Remove the multiplicity
- Add the second largest gap

@OOO@EOOEEEIOM9040808X7) 8190
@OOOOEOEE @904 78190
@OOOOOE@E )M 12(3(4[818(17)(i8(19)(20). .

» The result is another numerical semigroup.
> The genus is kept constant in all the transforms.

> Repeating several times (:= quasi-ordinarization number) we
obtain a quasi-ordinary semigroup.

Quasi-ordinarization transform of an ordinary semigroup is defined
to be itself.



Forest 5, of numerical semigroups of genus g

The forest J,
Define a graph with
» nodes corresponding to semigroups of genus g

> edges connecting each semigroup to its quasi-ordinarization
transform
q(A) = A

Fg is a forest with roots at the quasi-ordinary semigroups of genus
g, and the unique ordinary semigroup of genus g.

Contrary to Ty, Fy is a forest.



Forest 5, of numerical semigroups of genus g
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Conjecture

ng.q- # of semigroups of genus g and quasi-ordinarization number
qg.
Conjecture

> Ngq < Ngi1,g

» Equivalently, the number of semigroups in F at a given depth

is at most the number of semigroups in F4 4 at the same
depth.

This conjecture would prove ng < ng 1.



Recommended...

Recommended reference:
Nathan Kaplan. Counting numerical semigroups, Amer. Math.
Monthly 124: 862-875, 2017.

Recommended website:
Combinatorial Object Server++ Maintained by Torsten Mtze.


https://www.math.uci.edu/%7Enckaplan/research_files/kaplancountingsemigroups.pdf
http://combos.org/sgroup.html

Numerical semigroups arise in

> Algebraic geometry
(as Weierstrass semigroups, see general references)

» Coding theory
(see for example Numerical Semigroups and Codes)

» Privacy models
(see Klara Stokes’ PhD thesis and later works)

» Music theory
(Tempered monoids, the golden fractal monoid, and the well-tempered harmonic se
(Increasingly Enumerable Submonoids of R: Music Theory as a Unifying Theme,
to appear in The American Mathematical Monthly)


https://arxiv.org/abs/1706.09765
https://arxiv.org/abs/1703.01077
https://arxiv.org/abs/1904.02897
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