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Definition
A numerical semigroup is a subset Λ of N0 satisfying

◮ 0 ∈ Λ

◮ Λ + Λ ⊆ Λ

◮ #(N0 \ Λ) is finite (genus:=g:= #(N0 \ Λ))

Example: {0, 4, 5, 8, 9, 10, 12, . . . }

gaps: N0 \ Λ
non-gaps: Λ

Definition
[Eliahou-Fromentin] A gapset is a finite subset G of N0 satisfying

a, b ∈ N0

a + b ∈ G

}

=⇒ a ∈ G or b ∈ G.

G gapset ⇐⇒ N0 \ G numerical semigroup.



Cash point
The amounts of money one can obtain from a cash point (divided by 10)

Illustration: Agnès Capella Sala

0 2 4 5 6 7 8 9 10 . . .



Harmonics: 12-semitone count
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Divide the octave into 12 equal semitones.

0 12 19 24 28 31

34

36 38 40

42

43 45

46

47 48

What semitone interval corresponds to each harmonic?

H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50,→}.



Definition
A numerical semigroup is a subset Λ of N0 satisfying

◮ 0 ∈ Λ

◮ Λ + Λ ⊆ Λ

◮ #(N0 \ Λ) is finite (genus:=g:= #(N0 \ Λ))

gaps: N0 \ Λ
non-gaps: Λ

The third condition implies that there exist

Frobenius number := the largest gap F

conductor := c = F + 1



The Well-tempered semigroup
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H = {0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, . . . }

0 12 19 24 28 31 34 36 38 40 42 43 44 45 45 46 47 48 49 50 51 52 . . .

◮ g = 33

◮ F = 44

◮ c = 45



Generators
The generators of a numerical semigroup are those non-gaps

which can not be obtained as a sum of two smaller non-gaps.

Illustration: Agnès Capella Sala

0 2 4 5 6 7 8 9 10 . . .
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Frobenius’ problem

Suppose we have coins of specified denominations (say

a1, . . . , an).

What is the largest monetary amount that can not be obtained

using these coins? i.e., F (〈a1, . . . , an〉)?

n = 2: Sylvester’s formula a1a2 − a1 − a2.

n > 2?

Theorem (Curtis)

There is no polynomial solution for n = 3.

https://www.gettyimages.es/detail/foto/piles-of-stacked-coins-close-up-fotograf%C3%ADa-de-stock/200196880-001


i.e. F (〈6, 9, 20〉)?

https://playwithyourmath.com/2017/07/27/3-chicken-nuggets/


Wilf’s conjecture (1978)

The number e of generators satisfies

e >
c

c − g
.

Important contributions of Zhai, Eliahou, Dobbs,

Matthews, Kaplan, Sammartano, Moscariello, among

others.
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Counting semigroups by genus
Let ng denote the number of numerical semigroups of genus g.

◮ n0 = 1, since the unique numerical semigroup of genus 0 is

N0

◮ n1 = 1, since the unique numerical semigroup of genus 1 is

0 2 3 4 . . .

◮ n2 = 2. Indeed the unique numerical semigroups of genus 2

are
0 3 4 . . .

0 2 4 . . .

◮ n3 = 4

◮ n4 = 7

◮ n5 = 12

◮ n6 = 23

◮ n7 = 39

◮ n8 = 67
...



Counting semigroups by genus

Conjecture

[B-A 2008]

1. ng > ng−1 + ng−2

2. ◮ limg→∞

ng−1+ng−2

ng
= 1

◮ limg→∞

ng

ng−1
= φ

Weaker unsolved conjecture

[B-A 2007] ng 6 ng+1

http://www.singacom.uva.es/oldsite/seminarios/WorkshopSG/workshop2/Bras_SG_2007.pdf


Counting semigroups by genus

Behavior of
ng

ng−1

✲

✻

g

ng

ng−1

φ

0
50

q

q q

q
q

q

q
q
q
q
q
q
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q qq



Counting semigroups by genus

What is known

◮ Upper and lower bounds for ng

Dyck paths and Catalan bounds (w. de Mier), semigroup

tree and Fibonacci bounds, Elizalde’s improvements, and

others

◮ limg→∞

ng

ng−1
= φ

Alex Zhai (2013) with important contributions of Nathan

Kaplan and Yufei Zhao.
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Dyck paths

A Dyck path of order n is a staircase walk from (0, 0) to (n, n) that

lies over the diagonal x = y .

Example

(0, 0)

(n, n)

✻
✻
✲✻
✲✻
✻
✲✲✲✻

✲

The number of Dyck paths of order n is given by the Catalan

number

Cn =
1

n + 1

(

2n

n

)

.



Dyck paths

Definition
The square diagram of a numerical semigroup is the path

e(i) =

{

→ if i ∈ Λ,
↑ if i 6∈ Λ,

for 1 6 i 6 2g.

Example

0 4 5 8 9 10 12 . . .

✻
✻
✻
✲✲✻

✻
✲✲✲✻

✲

It always goes from (0, 0) to (g, g).



Dyck paths

Example

0 12 19 24 28 31 34 36 38 40 42 43 45 46 47 48 49 50 51 52 . . .

✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✲✻

✻
✻
✻
✻
✻
✲✻

✻
✻
✻
✲✻
✻
✻
✲✻

✻
✲✻

✻
✲✻
✲✻
✲✻
✲✻
✲✲✻

✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲



Dyck paths

Lemma
[B-A, de Mier, 2007]

The square diagram of a numerical semigroup is a Dyck path.

Corollary

ng 6 Cg = 1
g+1

(

2g
g

)

.

But. . . not all Dyck paths correspond to numerical semigroups.



Dyck paths
Use the augmented Dyck path (from 0)

✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✲✻
✻
✻
✻
✻
✻
✲✻
✻
✻
✻
✲✻
✻
✻
✲✻
✻
✲✻
✻
✲✻
✲✻
✲✻
✲✻
✲✲✻

✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲

✲



Dyck paths
Use the augmented Dyck path (from 0) and compute Hook lengths.

✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✻
✲✻
✻
✻
✻
✻
✻
✲✻
✻
✻
✻
✲✻
✻
✻
✲✻
✻
✲✻
✻
✲✻
✲✻
✲✻
✲✻
✲✲✻

✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲✲

•×
×
×
×
×
×
×
×

×××

a
✲

b✻



Dyck paths

✻
✻
✻
✻
✲✻

✻
✻
✻
✻
✻
✲✻

✻
✻
✻
✲✻

✻
✻
✲✻

✻
✲✻

✻
✲✻
✲✻
✲✻
✲✻
✲✲✻

•×
×
×
×
×
×
×
×

×××

❅
❅

❅■

Hook length=
# gaps in [a + 1, b]

✻
✻
✻
✻
✻
✻
✻

+ # nongaps in [a, b − 1]
✲

✲

✲

−1
= b − a

a
✲

b✻



Dyck paths
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✻
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✻
✻
✻
✲✻

✻
✻
✻
✻
✻
✲✻

✻
✻
✻
✲✻

✻
✻
✲✻

✻
✲✻

✻
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✲✻
✲✻
✲✻
✲✲✻

✲

•×
×
×
×
×
×
×
×

×××

❅
❅

❅■

Hook length=
# gaps in [a + 1, b]
+ # nongaps in [a, b − 1]
−1
= b − a

a
✲

b✻

All Hook lengths

H(D) = {b − a : b a gap , a a nongap},

Hook lengths of first column

h(D) = {b : b a gap }.

By the gapset definition, an (aug-

mented) Dyck path corresponds

to a numerical semigroup if and

only if

H(D) ⊆ h(D)

[Constantin, Houston-Edwards,

Kaplan]
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Tree T of numerical semigroups

From genus g to genus g − 1

Λ 7→ Λ ∪ {F (Λ)}

0 2 4 5 · · · 7→ 0 2 3 4 5 . . .

Not injective

0 2 4 5 . . .

0 3 4 5 . . .

7→ 0 2 3 4 5 . . .



Tree T of numerical semigroups

From genus g − 1 to genus g

Take out one by one all generators of Λ larger than F (Λ).

0 2 3 4 5 · · · 7→

0 2 4 5 . . .

0 3 4 5 . . .



Tree T of numerical semigroups

0 1 2 . . . 0 2 3 . . .

0 2 4 5 . . . 0 2 4 6 7 . . . 0 2 4 6 8 9 . . . 0 2 4 6 8 10 11 . . . 0 2 4 6 8 10 12 13 . . .

0 3 4 5 . . .

0 3 4 6 7 . . .

0 3 5 6 7 . . .

0 3 5 6 8 9 . . .

0 3 6 7 8 9 . . .

0 3 6 7 9 10 11 . . . 0 3 6 7 9 10 12 13 . . .

0 3 6 8 9 10 11 . . .

0 3 6 8 9 11 12 13 . . .

0 3 6 9 10 11 12 13 . . .

0 4 5 6 7 . . .

0 4 5 6 8 9 . . .

0 4 5 7 8 9 . . . 0 4 5 8 9 10 11 . . . 0 4 5 8 9 10 12 13 . . .

0 4 6 7 8 9 . . .

0 4 6 7 8 10 11 . . .

0 4 6 8 9 10 11 . . .

0 4 6 8 9 10 12 13 . . .

0 4 6 8 10 11 12 13 . . .

0 4 7 8 9 10 11 . . .

0 4 7 8 9 11 12 13 . . .

0 4 7 8 10 11 12 13 . . .

0 4 8 9 10 11 12 13 . . .

0 5 6 7 8 9 . . .

0 5 6 7 8 10 11 . . .

0 5 6 7 9 10 11 . . . 0 5 6 7 10 11 12 13 . . .

0 5 6 8 9 10 11 . . .

0 5 6 8 10 11 12 13 . . .

0 5 6 9 10 11 12 13 . . .

0 5 7 8 9 10 11 . . .

0 5 7 8 9 10 12 13 . . .

0 5 7 8 10 11 12 13 . . .

0 5 7 9 10 11 12 13 . . .

0 5 8 9 10 11 12 13 . . .

0 6 7 8 9 10 11 . . .

0 6 7 8 9 10 12 13 . . .

0 6 7 8 9 11 12 13 . . .

0 6 7 8 10 11 12 13 . . .

0 6 7 9 10 11 12 13 . . .

0 6 8 9 10 11 12 13 . . .

0 7 8 9 10 11 12 13 . . .

The parent of a semigroup Λ is Λ together with its Frobenius number.

The children of a semigroup are obtained taking away one by one all

generators larger than its Frobenius number.



Tree T of numerical semigroups

If all numerical semigroups had at least one child,

the conjecture ng 6 ng+1 would be obvious.

Observe:

0 4 5 8 9 10 12 13 14 . . . has 0 descendants

0 4 5 8 9 10 11 12 13 14 . . . has 1 descendants

0 4 5 7 8 9 10 11 12 13 14 . . . has 2 descendants

0 2 4 6 8 9 10 11 12 13 14 . . . has ∞ descendants



Tree T of numerical semigroups

Theorem (B-A, Bulygin, 2009)

Let d = gcd(Λ ∩ [1, c − 1]). Then,

1. Λ has ∞ descendants ⇐⇒ d 6= 1.

2. If d 6= 1 then Λ lies in infinitely many infinite chains if and only

if d is not prime.

Computation shows that most numerical semigroups have a finite

number of descendants.



Tree T of numerical semigroups



Tree T of numerical semigroups

We want to analyze the number of children of a node in terms of

the number of children of its parent.



Tree T of numerical semigroups

A numerical semigroup is ordinary if all its gaps are consecutive.

0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

Children of ordinary semigroups

Lemma
If the node of an ordinary semigroup has k children, then its

children have 0, 1, . . . , k − 3, k − 1, k + 1 children, respectively.

Children of nonordinary semigroups

Lemma
If a non-ordinary node in the semigroup tree has k children, then

its children have

◮ at least 0, . . . , k − 1 children, respectively,

◮ at most 1, . . . , k children, respectively.



Subtree

Lower bound for the number of descendants of semigroups of genus 7g
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0
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0

2
1

0

1 0

0

4

3

2

1

0

2
1

0

1 0

0

2
1 0

0

1 0

0

3

2
1 0

0

1 0

0

1 0

0

2
1 0

0

0

1 0
2 nodes 4 nodes 6 nodes 10 nodes 16 nodes 26 nodes 2 · Fg nodes



Subtree

Lemma
For g > 3,

2Fg 6 ng



Supertree

Upper bound for the number of descendants of semigroups of genus g
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0

2
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1
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0

1 1 1 1 1 1
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Bounds using descending rules

Lemma
For g > 3,

2Fg 6 ng 6 1 + 3 · 2g−3.
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Ordinary numerical semigroups

The multiplicity of a numerical semigroup is its smallest non-zero

nongap.

0 12 19 24 28 31 34 36 38 40 42 43 45 46 47 48 49 50 51 52 . . .

A non-trivial numerical semigroup is ordinary if m=F + 1.

0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .



Ordinarization of semigroups

Ordinarization transform of a semigroup:

- Remove the multiplicity

- Add the Frobenius number

0 4 5 8 9 10 12 13 14 15 16 17 18 19 20 . . .

0 5 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 . . .

◮ The result is another numerical semigroup.

◮ The genus is kept constant in all the transforms.

◮ Repeating several times (:= ordinarization number) we obtain

an ordinary semigroup.



Tree Tg of numerical semigroups of genus g

The tree Tg

Define a graph with

◮ nodes corresponding to semigroups of genus g

◮ edges connecting each semigroup to its ordinarization

transform

o(Λ)− Λ

Tg is a tree rooted at the unique ordinary semigroup of genus g.

Contrary to T, Tg has only a finite number of nodes (indeed, ng).



Tree Tg of numerical semigroups of genus g

0 8 9 10 11 12 13 14 . . .

0 7 8 9 10 11 12 14 . . .

0 6 8 9 10 11 12 14 . . .

0 7 8 9 10 11 13 14 . . .

0 5 8 9 10 11 13 14 . . .

0 7 8 9 10 12 13 14 . . .

0 6 8 9 10 12 13 14 . . .

0 5 8 9 10 12 13 14 . . .

0 4 8 9 10 12 13 14 . . .

0 7 8 9 11 12 13 14 . . . 0 6 7 8 9 12 13 14 . . .

0 6 8 9 11 12 13 14 . . . 0 3 6 8 9 11 12 14 . . .

0 4 8 9 11 12 13 14 . . .

0 7 8 10 11 12 13 14 . . .

0 4 7 8 10 11 12 14 . . .

0 6 7 8 10 12 13 14 . . .

0 5 7 8 10 12 13 14 . . .

0 6 7 8 11 12 13 14 . . .

0 4 7 8 11 12 13 14 . . .

0 6 8 10 11 12 13 14 . . .

0 4 6 8 10 11 12 14 . . .

0 4 6 8 10 12 13 14 . . . 0 2 4 6 8 10 12 14 . . .

0 5 8 10 11 12 13 14 . . .

0 4 8 10 11 12 13 14 . . .

0 7 9 10 11 12 13 14 . . .

0 5 7 9 10 11 12 14 . . .

0 6 7 9 10 12 13 14 . . .

0 5 7 9 10 12 13 14 . . .

0 6 7 9 11 12 13 14 . . .

0 6 7 10 11 12 13 14 . . .

0 5 7 10 11 12 13 14 . . .

0 6 9 10 11 12 13 14 . . .

0 5 6 9 10 11 12 14 . . .

0 3 6 9 10 12 13 14 . . .

0 3 6 9 11 12 13 14 . . .

0 5 6 10 11 12 13 14 . . .

0 5 9 10 11 12 13 14 . . .



Conjecture

ng,r : number of semigroups of genus g and ordinarization number

r .

Conjecture

◮ ng,r 6 ng+1,r

◮ Equivalently, the number of semigroups in Tg at a given depth

is at most the number of semigroups in Tg+1 at the same

depth.

This conjecture would prove ng 6 ng+1.

This result is proved for the lowest and largest depths.
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Quasi-ordinary numerical semigroups

A non-ordinary semigroup Λ is a quasi-ordinary semigroup if Λ ∪ F

is ordinary.

0 7 8 9 10 12 13 14 15 16 17 18 19 20 . . .



Quasi-ordinarization of semigroups

Quasi-ordinarization transform of a non-ordinary semigroup:

- Remove the multiplicity

- Add the second largest gap

0 4 5 8 9 10 12 13 14 15 16 17 18 19 20 . . .

0 5 7 8 9 10 12 13 14 15 16 17 18 19 20 . . .

0 6 7 8 9 10 12 13 14 15 16 17 18 19 20 . . .

◮ The result is another numerical semigroup.

◮ The genus is kept constant in all the transforms.

◮ Repeating several times (:= quasi-ordinarization number) we

obtain a quasi-ordinary semigroup.

Quasi-ordinarization transform of an ordinary semigroup is defined

to be itself.



Forest Fg of numerical semigroups of genus g

The forest Fg

Define a graph with

◮ nodes corresponding to semigroups of genus g

◮ edges connecting each semigroup to its quasi-ordinarization

transform

q(Λ)− Λ

Fg is a forest with roots at the quasi-ordinary semigroups of genus

g, and the unique ordinary semigroup of genus g.

Contrary to Tg , Fg is a forest.



Forest Fg of numerical semigroups of genus g
0 8 9 10 11 12 13 14

0 7 9 10 11 12 13 14 . . .

0 6 9 10 11 12 13 14 . . .

0 5 9 10 11 12 13 14 . . .

0 7 8 10 11 12 13 14 . . .

0 6 7 10 11 12 13 14 . . .

0 5 7 10 11 12 13 14 . . .

0 6 8 10 11 12 13 14 . . . 0 5 6 10 11 12 13 14 . . .

0 5 8 10 11 12 13 14 . . .

0 4 8 10 11 12 13 14 . . .

0 7 8 9 11 12 13 14 . . .

0 6 7 8 11 12 13 14 . . .

0 4 7 8 11 12 13 14 . . .

0 6 7 9 11 12 13 14 . . .

0 6 8 9 11 12 13 14 . . . 0 3 6 9 11 12 13 14 . . .

0 4 8 9 11 12 13 14 . . .

0 7 8 9 10 12 13 14 . . .

0 6 7 8 9 12 13 14 . . .

0 6 7 8 10 12 13 14 . . .

0 5 7 8 10 12 13 14 . . .

0 6 7 9 10 12 13 14 . . .

0 5 7 9 10 12 13 14 . . .

0 6 8 9 10 12 13 14 . . .

0 4 6 8 10 12 13 14 . . .

0 3 6 9 10 12 13 14 . . .

0 5 8 9 10 12 13 14 . . .

0 4 8 9 10 12 13 14 . . .



Conjecture

ng,q : # of semigroups of genus g and quasi-ordinarization number

q.

Conjecture

◮ ng,q 6 ng+1,q

◮ Equivalently, the number of semigroups in Fg at a given depth

is at most the number of semigroups in Fg+1 at the same

depth.

This conjecture would prove ng 6 ng+1.



Recommended...

Recommended reference:

Nathan Kaplan. Counting numerical semigroups, Amer. Math.

Monthly 124: 862-875, 2017.

Recommended website:

Combinatorial Object Server++ Maintained by Torsten Mütze.

https://www.math.uci.edu/%7Enckaplan/research_files/kaplancountingsemigroups.pdf
http://combos.org/sgroup.html


Numerical semigroups arise in

◮ Algebraic geometry

(as Weierstrass semigroups, see general references)

◮ Coding theory

(see for example Numerical Semigroups and Codes)

◮ Privacy models

(see Klara Stokes’ PhD thesis and later works)

◮ Music theory

(Tempered monoids, the golden fractal monoid, and the well-tempered harmonic semig

(Increasingly Enumerable Submonoids of R: Music Theory as a Unifying Theme,

to appear in The American Mathematical Monthly)

https://arxiv.org/abs/1706.09765
https://arxiv.org/abs/1703.01077
https://arxiv.org/abs/1904.02897
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