Semigrupos numéricos

Maria Bras-Amorós Universitat Rovira i Virgili, Catalonia

Universidade Federal de Uberlândia

13 de Janeiro de 2020

Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems

Frobenius' coin problem Wilf's conjecture

Counting by genus

Conjecture Dyck paths and Catalan bounds Semigroup tree and Fibonacci bounds Ordinarization transform and ordinarization tree Quasi-ordinarization transform and quasi-ordinarization forest

Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems

Frobenius' coin problem Wilf's conjecture

Counting by genus

Conjecture Dyck paths and Catalan bounds Semigroup tree and Fibonacci bounds Ordinarization transform and ordinarization tree Quasi-ordinarization transform and quasi-ordinarization forest

Definition

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

$$\blacktriangleright \ \Lambda + \Lambda \subseteq \Lambda$$

• $\#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $\#(\mathbb{N}_0 \setminus \Lambda)$)

```
\label{eq:stample} \begin{split} & \text{Example: } \{0,4,5,8,9,10,12,\dots\} \\ & \text{gaps: } \mathbb{N}_0 \setminus \Lambda \\ & \text{non-gaps: } \Lambda \end{split}
```

Definition

[Eliahou-Fromentin] A gapset is a finite subset G of \mathbb{N}_0 satisfying

$$\left. egin{array}{c} a,b\in\mathbb{N}_0\ a+b\in G \end{array}
ight\} \Longrightarrow a\in G ext{ or } b\in G.$$

 $G \text{ gapset} \Longleftrightarrow \mathbb{N}_0 \setminus G \text{ numerical semigroup}.$

Cash point

The amounts of money one can obtain from a cash point (divided by 10)

Illustration: Agnès Capella Sala

Harmonics: 12-semitone count

Divide the octave into 12 equal semitones.

What semitone interval corresponds to each harmonic?

 $H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, \rightarrow\}$

Definition

A numerical semigroup is a subset Λ of \mathbb{N}_0 satisfying

- ► $0 \in \Lambda$
- $\blacktriangleright \ \Lambda + \Lambda \subseteq \Lambda$
- $#(\mathbb{N}_0 \setminus \Lambda)$ is finite (genus:=g:= $#(\mathbb{N}_0 \setminus \Lambda)$)

```
gaps: \mathbb{N}_0 \setminus \Lambda
non-gaps: \Lambda
```

The third condition implies that there exist

Frobenius number := the largest gap F conductor := c = F + 1

The Well-tempered semigroup

 $H = \{0, 12, 19, 24, 28, 31, 34, 36, 38, 40, 42, 43, 45, 46, 47, 48, \dots\}$

- ▶ *g* = 33
- ► *F* = 44
- ► c = 45

Generators

The generators of a numerical semigroup are those non-gaps which can not be obtained as a sum of two smaller non-gaps.

Illustration: Agnès Capella Sala

Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems

Frobenius' coin problem Wilf's conjecture

Counting by genus

Conjecture Dyck paths and Catalan bounds Semigroup tree and Fibonacci bounds Ordinarization transform and ordinarization tree Quasi-ordinarization transform and quasi-ordinarization forest

Frobenius' problem

Suppose we have coins of specified denominations (say a_1, \ldots, a_n).

What is the largest monetary amount that can not be obtained using these coins? i.e., $F(\langle a_1, \ldots, a_n \rangle)$?

n = 2: Sylvester's formula $a_1 a_2 - a_1 - a_2$.

n > 2?

Theorem (Curtis)

There is no polynomial solution for n = 3.

Wilf's conjecture (1978)

The number e of generators satisfies

$$e \geqslant rac{c}{c-g}.$$

Important contributions of Zhai, Eliahou, Dobbs, Matthews, Kaplan, Sammartano, Moscariello, among others.

Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems

Frobenius' coin problem Wilf's conjecture

Counting by genus

Conjecture Dyck paths and Catalan bounds Semigroup tree and Fibonacci bounds Ordinarization transform and ordinarization tree Quasi-ordinarization transform and quasi-ordinarization forest

Let n_g denote the number of numerical semigroups of genus g.

- ▶ $n_0 = 1$, since the unique numerical semigroup of genus 0 is \mathbb{N}_0
- ▶ $n_1 = 1$, since the unique numerical semigroup of genus 1 is

0 2 3 4 ...

▶ $n_2 = 2$. Indeed the unique numerical semigroups of genus 2 are

0 34...

- ► *n*₃ = 4
- ▶ *n*₄ = 7
- ▶ *n*₅ = 12
- ▶ *n*₆ = 23
- ▶ *n*₇ = 39

÷

Conjecture

[B-A 2008]

1.
$$n_g \ge n_{g-1} + n_{g-2}$$

2. $\blacktriangleright \lim_{g \to \infty} \frac{n_{g-1} + n_{g-2}}{n_g} = 1$
 $\blacktriangleright \lim_{g \to \infty} \frac{n_g}{n_{g-1}} = \phi$

Weaker unsolved conjecture [B-A 2007] $n_g \leqslant n_{g+1}$

What is known

• Upper and lower bounds for n_g

Dyck paths and Catalan bounds (w. de Mier), semigroup tree and Fibonacci bounds, Elizalde's improvements, and others

$$\blacktriangleright \lim_{g \to \infty} \frac{n_g}{n_{g-1}} = \phi$$

Alex Zhai (2013) with important contributions of Nathan Kaplan and Yufei Zhao.

Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems

Frobenius' coin problem Wilf's conjecture

Counting by genus

Conjecture

Dyck paths and Catalan bounds

Semigroup tree and Fibonacci bounds Ordinarization transform and ordinarization tree Quasi-ordinarization transform and quasi-ordinarization forest

A Dyck path of order *n* is a staircase walk from (0, 0) to (n, n) that lies over the diagonal x = y.

Example

The number of Dyck paths of order *n* is given by the Catalan number

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

Definition

The square diagram of a numerical semigroup is the path

$$e(i) = \begin{cases} \rightarrow & \text{if } i \in \Lambda, \\ \uparrow & \text{if } i \notin \Lambda, \end{cases} \quad \text{for } 1 \leqslant i \leqslant 2g.$$

Example

It always goes from (0, 0) to (g, g).

Example

Lemma [B-A, de Mier, 2007] The square diagram of a numerical semigroup is a Dyck path.

Corollary

 $n_g \leqslant C_g = rac{1}{g+1} {2g \choose g}.$

But... not all Dyck paths correspond to numerical semigroups.

Use the *augmented Dyck path* (from 0)

Use the augmented Dyck path (from 0) and compute Hook lengths.

Hook length= # gaps in [a + 1, b]+ # nongaps in [a, b - 1]= b - a

All Hook lengths

 $H(D) = \{ \underline{b} - \underline{a} : \underline{b} \text{ a gap }, \underline{a} \text{ a nongap} \},\$

Hook lengths of first column

 $h(D) = \{ \frac{b}{b} : \frac{b}{b} \text{ a gap } \}.$

By the gapset definition, an (augmented) Dyck path corresponds to a numerical semigroup if and only if

 $H(D) \subseteq h(D)$

[Constantin, Houston-Edwards, Kaplan]

Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems

Frobenius' coin problem Wilf's conjecture

Counting by genus

Conjecture Dyck paths and Catalan bounds Semigroup tree and Fibonacci bounds Ordinarization transform and ordinarization tree Quasi-ordinarization transform and quasi-ordinarization

From genus g to genus g-1

$$\Lambda \mapsto \Lambda \cup \{F(\Lambda)\}$$

Not injective

From genus g - 1 to genus g

Take out one by one all generators of Λ larger than $F(\Lambda)$.

The parent of a semigroup Λ is Λ together with its Frobenius number.

The children of a semigroup are obtained taking away one by one all generators larger than its Frobenius number.

If all numerical semigroups had at least one child, the conjecture $n_g \leq n_{g+1}$ would be obvious.

Observe:

 0
 4
 5
 8
 9
 10
 12
 13
 14
 ...
 has 0 descendants

 0
 4
 5
 8
 9
 10
 11
 12
 13
 14
 ...
 has 1 descendants

 0
 4
 5
 7
 8
 9
 10
 11
 12
 13
 14
 ...
 has 1 descendants

 0
 4
 5
 7
 8
 9
 10
 11
 12
 13
 14
 ...
 has 2 descendants

 0
 2
 4
 6
 8
 9
 10
 11
 12
 13
 14
 ...
 has 2 descendants

Theorem (B-A, Bulygin, 2009)

Let $d = gcd(\Lambda \cap [1, c - 1])$. Then,

- 1. A has ∞ descendants $\iff d \neq 1$.
- 2. If $d \neq 1$ then Λ lies in infinitely many infinite chains if and only if d is not prime.

Computation shows that most numerical semigroups have a finite number of descendants.

We want to analyze the number of children of a node in terms of the number of children of its parent.

A numerical semigroup is ordinary if all its gaps are consecutive.

0 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

Children of ordinary semigroups

Lemma

If the node of an ordinary semigroup has k children, then its children have $0, 1, \ldots, k-3, k-1, k+1$ children, respectively.

Children of nonordinary semigroups

Lemma

If a non-ordinary node in the semigroup tree has k children, then its children have

- at least $0, \ldots, k-1$ children, respectively,
- ► at most 1,..., k children, respectively.

Subtree

Lower bound for the number of descendants of semigroups of genus 7g

Subtree

Lemma For $g \ge 3$,

 $2F_g \leqslant n_g$

Supertree

Upper bound for the number of descendants of semigroups of genus g

 $1 + 3 \cdot 2^{g-3}$ nodes

Bounds using descending rules

Lemma For $g \ge 3$,

 $2F_g \leqslant n_g \leqslant 1 + 3 \cdot 2^{g-3}.$

Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems

Frobenius' coin problem Wilf's conjecture

Counting by genus

Conjecture Dyck paths and Catalan bounds Semigroup tree and Fibonacci bounds

Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

Ordinary numerical semigroups

The multiplicity of a numerical semigroup is its smallest non-zero nongap.

A non-trivial numerical semigroup is ordinary if m=F + 1.

Ordinarization of semigroups

Ordinarization transform of a semigroup:

- Remove the multiplicity
- Add the Frobenius number

 0
 4
 5
 8
 9
 10
 12
 13
 14
 15
 16
 17
 18
 19
 20
 ...

 0
 5
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 ...

 0
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 0
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 ...

- The result is another numerical semigroup.
- The genus is kept constant in all the transforms.
- Repeating several times (:= ordinarization number) we obtain an ordinary semigroup.

Tree \mathcal{T}_g of numerical semigroups of genus g

The tree T_g

Define a graph with

- nodes corresponding to semigroups of genus g
- edges connecting each semigroup to its ordinarization transform

$$o(\Lambda) - \Lambda$$

 T_g is a tree rooted at the unique ordinary semigroup of genus g. Contrary to T, T_g has only a finite number of nodes (indeed, n_g).

Tree T_g of numerical semigroups of genus g

Conjecture

 $n_{g,r}$: number of semigroups of genus g and ordinarization number r.

Conjecture

- ► $n_{g,r} \leq n_{g+1,r}$
- ► Equivalently, the number of semigroups in T_g at a given depth is at most the number of semigroups in T_{g+1} at the same depth.

This conjecture would prove $n_g \leq n_{g+1}$.

This result is proved for the lowest and largest depths.

Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems

Frobenius' coin problem Wilf's conjecture

Counting by genus

Conjecture Dyck paths and Catalan bounds Semigroup tree and Fibonacci bounds Ordinarization transform and ordinarization tree

Quasi-ordinarization transform and quasi-ordinarization forest

Quasi-ordinary numerical semigroups

A non-ordinary semigroup Λ is a quasi-ordinary semigroup if $\Lambda \cup F$ is ordinary.

0 7 8 9 10 12 13 14 15 16 17 18 19 20 ...

Quasi-ordinarization of semigroups

Quasi-ordinarization transform of a non-ordinary semigroup:

- Remove the multiplicity
- Add the second largest gap

 0
 4
 5
 8
 9
 12
 13
 14
 15
 16
 17
 18
 19
 20
 ...

 0
 5
 7
 8
 9
 10
 12
 13
 14
 15
 16
 17
 18
 19
 20
 ...

 0
 6
 7
 8
 9
 10
 12
 13
 14
 15
 16
 17
 18
 19
 20
 ...

 0
 6
 7
 8
 9
 10
 12
 13
 14
 15
 16
 17
 18
 19
 20
 ...

- The result is another numerical semigroup.
- The genus is kept constant in all the transforms.
- Repeating several times (:= quasi-ordinarization number) we obtain a quasi-ordinary semigroup.

Quasi-ordinarization transform of an ordinary semigroup is defined to be itself.

Forest \mathcal{F}_g of numerical semigroups of genus g

The forest \mathcal{F}_g

Define a graph with

- **nodes** corresponding to semigroups of genus *g*
- edges connecting each semigroup to its quasi-ordinarization transform

$$q(\Lambda) - \Lambda$$

 \mathcal{F}_g is a forest with roots at the quasi-ordinary semigroups of genus g, and the unique ordinary semigroup of genus g.

Contrary to \mathcal{T}_g , \mathcal{F}_g is a forest.

Forest \mathcal{F}_g of numerical semigroups of genus g

Conjecture

 $n_{g,q}$: # of semigroups of genus g and quasi-ordinarization number q.

Conjecture

- ► $n_{g,q} \leq n_{g+1,q}$
- ► Equivalently, the number of semigroups in *F_g* at a given depth is at most the number of semigroups in *F_{g+1}* at the same depth.

This conjecture would prove $n_g \leq n_{g+1}$.

Recommended reference:

Nathan Kaplan. Counting numerical semigroups, Amer. Math. Monthly 124: 862-875, 2017.

Recommended website:

Combinatorial Object Server++ Maintained by Torsten Mütze.

Numerical semigroups arise in

- Algebraic geometry (as Weierstrass semigroups, see general references)
- Coding theory (see for example Numerical Semigroups and Codes)
- Privacy models (see Klara Stokes' PhD thesis and later works)

Music theory

(Tempered monoids, the golden fractal monoid, and the well-tempered harmonic se (Increasingly Enumerable Submonoids of R: Music Theory as a Unifying Theme, to appear in The American Mathematical Monthly)