## Semigrupos numéricos

Maria Bras-Amorós<br>Universitat Rovira i Virgili, Catalonia



Universidade Federal de Uberlândia
13 de Janeiro de 2020

## Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems
Frobenius' coin problem
Wilf's conjecture

Counting by genus
Conjecture
Dyck paths and Catalan bounds
Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

Basic notions
Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems
Frobenius' coin problem
Wilf's conjecture

Counting by genus
Conjecture
Dyck paths and Catalan bounds
Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

## Definition

A numerical semigroup is a subset $\Lambda$ of $\mathbb{N}_{0}$ satisfying

- $0 \in \Lambda$
- $\Lambda+\Lambda \subseteq \Lambda$
- $\#\left(\mathbb{N}_{0} \backslash \Lambda\right)$ is finite (genus:=g:= $\#\left(\mathbb{N}_{0} \backslash \Lambda\right)$ )

Example: $\{0,4,5,8,9,10,12, \ldots\}$
gaps: $\mathbb{N}_{0} \backslash \Lambda$
non-gaps: $\wedge$

## Definition

[Eliahou-Fromentin] A gapset is a finite subset $G$ of $\mathbb{N}_{0}$ satisfying

$$
\left.\begin{array}{l}
a, b \in \mathbb{N}_{0} \\
a+b \in G
\end{array}\right\} \Longrightarrow a \in G \text { or } b \in G .
$$

$G$ gapset $\Longleftrightarrow \mathbb{N}_{0} \backslash G$ numerical semigroup.

## Cash point

The amounts of money one can obtain from a cash point (divided by 10)


Illustration: Agnès Capella Sala


## Harmonics: 12-semitone count



Divide the octave into 12 equal semitones.


What semitone interval corresponds to each harmonic?

$$
H=\{0,12,19,24,28,31,34,36,38,40,42,43,45,46,47,48,49,50, \rightarrow\}
$$

## Definition

A numerical semigroup is a subset $\Lambda$ of $\mathbb{N}_{0}$ satisfying

- $0 \in \Lambda$
- $\Lambda+\Lambda \subseteq \Lambda$
- $\#\left(\mathbb{N}_{0} \backslash \Lambda\right)$ is finite (genus: $=g:=\#\left(\mathbb{N}_{0} \backslash \Lambda\right)$ )
gaps: $\mathbb{N}_{0} \backslash \Lambda$
non-gaps: $\wedge$
The third condition implies that there exist
Frobenius number := the largest gap $F$
conductor : $=c=F+1$


## The Well-tempered semigroup


$H=\{0,12,19,24,28,31,34,36,38,40,42,43,45,46,47,48, \ldots\}$


- $g=33$
- $F=44$
- $c=45$


## Generators

The generators of a numerical semigroup are those non-gaps which can not be obtained as a sum of two smaller non-gaps.



## Basic notions

Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems
Frobenius' coin problem
Wilf's conjecture

Counting by genus
Conjecture
Dyck paths and Catalan bounds
Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

## Frobenius' problem

Suppose we have coins of specified denominations (say $\left.a_{1}, \ldots, a_{n}\right)$.


What is the largest monetary amount that can not be obtained using these coins? i.e., $F\left(\left\langle a_{1}, \ldots, a_{n}\right\rangle\right)$ ?
$n=2:$ Sylvester's formula $a_{1} a_{2}-a_{1}-a_{2}$.
$n>2$ ?
Theorem (Curtis)
There is no polynomial solution for $n=3$.

## Chicken Nuggets

Chicken nuggets come in boxes of 6, 9, and 20.


9


What is the largest number of nuggets that you CANNOT buy when combining various boxes?


I'm sorry, but that's not possible.
i.e. $F(\langle 6,9,20\rangle)$ ?

## Wilf's conjecture (1978)

The number $e$ of generators satisfies

$$
e \geqslant \frac{c}{c-g}
$$

Important contributions of Zhai, Eliahou, Dobbs, Matthews, Kaplan, Sammartano, Moscariello, among others.

Basic notions
Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems
Frobenius' coin problem
Wilf's conjecture

Counting by genus
Conjecture
Dyck paths and Catalan bounds
Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

## Counting semigroups by genus

Let $n_{g}$ denote the number of numerical semigroups of genus $g$.

- $n_{0}=1$, since the unique numerical semigroup of genus 0 is $\mathbb{N}_{0}$
- $n_{1}=1$, since the unique numerical semigroup of genus 1 is (0) (2)(3)4)…
- $n_{2}=2$. Indeed the unique numerical semigroups of genus 2 are

- $n_{3}=4$
- $n_{4}=7$
- $n_{5}=12$
- $n_{6}=23$
- $n_{7}=39$
- $n_{8}=67$


## Counting semigroups by genus

Conjecture
[B-A 2008]

1. $n_{g} \geqslant n_{g-1}+n_{g-2}$
2. $\lim _{g \rightarrow \infty} \frac{n_{g-1}+n_{g-2}}{n_{g}}=1$

- $\lim _{g \rightarrow \infty} \frac{n_{g}}{n_{g-1}}=\phi$

Weaker unsolved conjecture
[B-A 2007] $n_{g} \leqslant n_{g+1}$


## Counting semigroups by genus



## Counting semigroups by genus

## What is known

- Upper and lower bounds for $n_{g}$

Dyck paths and Catalan bounds (w. de Mier), semigroup tree and Fibonacci bounds, Elizalde's improvements, and others

- $\lim _{g \rightarrow \infty} \frac{n_{g}}{n_{g-1}}=\phi$

Alex Zhai (2013) with important contributions of Nathan Kaplan and Yufei Zhao.

Basic notions
Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems
Frobenius' coin problem
Wilf's conjecture

Counting by genus
Conjecture
Dyck paths and Catalan bounds
Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

## Dyck paths

A Dyck path of order $n$ is a staircase walk from $(0,0)$ to $(n, n)$ that lies over the diagonal $x=y$.

## Example



The number of Dyck paths of order $n$ is given by the Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

## Dyck paths

## Definition

The square diagram of a numerical semigroup is the path

$$
e(i)=\left\{\begin{array}{ll}
\vec{~} & \text { if } i \in \Lambda, \\
\uparrow & \text { if } i \notin \Lambda,
\end{array} \quad \text { for } 1 \leqslant i \leqslant 2 g .\right.
$$

Example



It always goes from $(0,0)$ to $(g, g)$.

## Dyck paths

## Example




## Dyck paths

## Lemma

[B-A, de Mier, 2007]
The square diagram of a numerical semigroup is a Dyck path.
Corollary
$n_{g} \leqslant C_{g}=\frac{1}{g+1}\binom{2 g}{g}$.
But. . . not all Dyck paths correspond to numerical semigroups.

## Dyck paths

## Use the augmented Dyck path (from 0)



## Dyck paths

Use the augmented Dyck path (from 0) and compute Hook lengths.


## Dyck paths



## Dyck paths

All Hook lengths


$$
H(D)=\{b-a: b \text { a gap }, \text { a a nongap }\},
$$

Hook lengths of first column

$$
h(D)=\{b: b \text { a gap }\}
$$

By the gapset definition, an (augmented) Dyck path corresponds to a numerical semigroup if and only if

$$
H(D) \subseteq h(D)
$$

[Constantin, Houston-Edwards, Kaplan]

Basic notions
Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems
Frobenius' coin problem
Wilf's conjecture

Counting by genus
Conjecture
Dyck paths and Catalan bounds
Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

## Tree $\mathcal{T}$ of numerical semigroups

From genus $g$ to genus $g-1$

\[

\]

Not injective


## Tree $\mathcal{T}$ of numerical semigroups

From genus $g-1$ to genus $g$
Take out one by one all generators of $\Lambda$ larger than $F(\Lambda)$.


## Tree $\mathcal{T}$ of numerical semigroups



The parent of a semigroup $\wedge$ is $\Lambda$ together with its Frobenius number.

The children of a semigroup are obtained taking away one by one all generators larger than its Frobenius number.

## Tree $\mathcal{T}$ of numerical semigroups

If all numerical semigroups had at least one child, the conjecture $n_{g} \leqslant n_{g+1}$ would be obvious.

Observe:


## Tree $\mathcal{T}$ of numerical semigroups

Theorem (B-A, Bulygin, 2009)
Let $d=\operatorname{gcd}(\Lambda \cap[1, c-1])$. Then,

1. $\wedge$ has $\infty$ descendants $\Longleftrightarrow d \neq 1$.
2. If $d \neq 1$ then $\wedge$ lies in infinitely many infinite chains if and only if $d$ is not prime.

Computation shows that most numerical semigroups have a finite number of descendants.

## Tree $\mathcal{T}$ of numerical semigroups



## Tree $\mathcal{T}$ of numerical semigroups

We want to analyze the number of children of a node in terms of the number of children of its parent.

## Tree $\mathcal{T}$ of numerical semigroups

A numerical semigroup is ordinary if all its gaps are consecutive.


Children of ordinary semigroups
Lemma
If the node of an ordinary semigroup has $k$ children, then its children have $0,1, \ldots, k-3, k-1, k+1$ children, respectively.

## Children of nonordinary semigroups

## Lemma

If a non-ordinary node in the semigroup tree has $k$ children, then its children have

- at least $0, \ldots, k-1$ children, respectively,
- at most $1, \ldots, k$ children, respectively.


## Subtree

Lower bound for the number of descendants of semigroups of genus 7 g


## Subtree

Lemma
For $g \geqslant 3$,

$$
2 F_{g} \leqslant n_{g}
$$

## Supertree

Upper bound for the number of descendants of semigroups of genus $g$


## Bounds using descending rules

Lemma
For $g \geqslant 3$,

$$
2 F_{g} \leqslant n_{g} \leqslant 1+3 \cdot 2^{g-3} .
$$

Basic notions
Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems
Frobenius' coin problem
Wilf's conjecture

Counting by genus
Conjecture
Dyck paths and Catalan bounds
Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

## Ordinary numerical semigroups

The multiplicity of a numerical semigroup is its smallest non-zero nongap.

A non-trivial numerical semigroup is ordinary if $m=F+1$.

## Ordinarization of semigroups

Ordinarization transform of a semigroup:

- Remove the multiplicity
- Add the Frobenius number

- The result is another numerical semigroup.
- The genus is kept constant in all the transforms.
- Repeating several times (:= ordinarization number) we obtain an ordinary semigroup.


## Tree $\mathcal{T}_{g}$ of numerical semigroups of genus $g$

The tree $\mathcal{T}_{g}$
Define a graph with

- nodes corresponding to semigroups of genus $g$
- edges connecting each semigroup to its ordinarization transform

$$
o(\Lambda)-\Lambda
$$

$\mathcal{T}_{g}$ is a tree rooted at the unique ordinary semigroup of genus $g$.
Contrary to $\mathfrak{T}, \mathcal{T}_{g}$ has only a finite number of nodes (indeed, $n_{g}$ ).

## Tree $\mathcal{T}_{g}$ of numerical semigroups of genus $g$



## Conjecture

$n_{g, r}$ : number of semigroups of genus $g$ and ordinarization number $r$.

Conjecture

- $n_{g, r} \leqslant n_{g+1, r}$
- Equivalently, the number of semigroups in $\mathcal{T}_{g}$ at a given depth is at most the number of semigroups in $\mathcal{T}_{g+1}$ at the same depth.

This conjecture would prove $n_{g} \leqslant n_{g+1}$.
This result is proved for the lowest and largest depths.

Basic notions
Gaps, non-gaps, genus, gapsets, Frobenius number, conductor Generators

Classical problems
Frobenius' coin problem
Wilf's conjecture

Counting by genus
Conjecture
Dyck paths and Catalan bounds
Semigroup tree and Fibonacci bounds
Ordinarization transform and ordinarization tree
Quasi-ordinarization transform and quasi-ordinarization forest

## Quasi-ordinary numerical semigroups

A non-ordinary semigroup $\Lambda$ is a quasi-ordinary semigroup if $\Lambda \cup F$ is ordinary.

## Quasi-ordinarization of semigroups

Quasi-ordinarization transform of a non-ordinary semigroup:

- Remove the multiplicity
- Add the second largest gap

- The result is another numerical semigroup.
- The genus is kept constant in all the transforms.
- Repeating several times (:= quasi-ordinarization number) we obtain a quasi-ordinary semigroup.

Quasi-ordinarization transform of an ordinary semigroup is defined to be itself.

## Forest $\mathcal{F}_{g}$ of numerical semigroups of genus $g$

The forest $\mathcal{F}_{g}$
Define a graph with

- nodes corresponding to semigroups of genus $g$
- edges connecting each semigroup to its quasi-ordinarization transform

$$
q(\Lambda)-\Lambda
$$

$\mathcal{F}_{g}$ is a forest with roots at the quasi-ordinary semigroups of genus $g$, and the unique ordinary semigroup of genus $g$.
Contrary to $\mathcal{T}_{g}, \mathcal{F}_{g}$ is a forest.

## Forest $\mathcal{F}_{g}$ of numerical semigroups of genus $g$




## Conjecture

$n_{g, q}$ : \# of semigroups of genus $g$ and quasi-ordinarization number $q$.

Conjecture

- $n_{g, q} \leqslant n_{g+1, q}$
- Equivalently, the number of semigroups in $\mathcal{F}_{g}$ at a given depth is at most the number of semigroups in $\mathcal{F}_{g+1}$ at the same depth.

This conjecture would prove $n_{g} \leqslant n_{g+1}$.

## Recommended...

Recommended reference:
Nathan Kaplan. Counting numerical semigroups, Amer. Math.
Monthly 124: 862-875, 2017.

Recommended website:
Combinatorial Object Server++ Maintained by Torsten Mütze.

## Numerical semigroups arise in

- Algebraic geometry
(as Weierstrass semigroups, see general references)
- Coding theory
(see for example Numerical Semigroups and Codes)
- Privacy models
(see Klara Stokes' PhD thesis and later works)
- Music theory
(Tempered monoids, the golden fractal monoid, and the well-tempered harmonic se (Increasingly Enumerable Submonoids of R: Music Theory as a Unifying Theme, to appear in The American Mathematical Monthly)

